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ABSTRACT

In this paper, we apply the local potential concept
to construct a functional for the finite element method
(FEM) with 3D structures. The corresponding bound-
ary conditions at the planes of incidence and transmit-
tance for hybrid modes are derived. These conditions
take into account both the transverse and longitudinal
field components of the propagating signals. Employ-
ing these boundary conditions, in conjunction with
the absorbing boundary conditions (ABC) and/or the
boundary conditions of the first and third kind, a 3D
asymmetrical functional is implemented as a hybrid
vector edge element method. Numerical examples
are presented for air bridges and lossy transmission
lines, connected by a through-hole via. The equivalent
frequency dependent circuit parameters are then ex-
tracted from the field solutions. Laboratory measure-
ments and data comparison with previous published
results strongly support the newly developed theoreti-
cal work.

INTRODUCTION

In recent years, millimeter wave integrated circuits,
very large scale integrated (VLSI) circuits and in-
tegrated opto-electronics, have undergone extremely
rapid development. This rapid evolution has in turn
expanded the interest in, and expectations of, the mod-
eling and analysis of guided wave structures at both
the electromagnetic (EM) field and equivalent circuit
levels. The full-wave EM modeling and simulation
of 3D lossy structures have become a necessity in the
design and optimization of state-of-the-art systems.

In this paper, we have developed a new functional
for general 3D guided wave structures, which need not
have completely closed metallic walls. We shall then
derive the termination conditions at the plane of inci-
dence and the plane of transmittance. This 3D asym-
metrical functional is then implemented by using hy-
brid vector finite elements. Utilizing prior information
of the eigenmodes resulting from the evaluation of the
Q%D edge element solver [1], the 3D field solutions
are obtained. The frequency dependent circuit param-
eters, such as L, C, R, G, are converted according to
relevant equivalent circuits of the structures.

BASIC THEORY

In the finite element implementation, the basic EM
equation, which is to be solved for the 3D structures
in a full-wave analysis, is the vector wave propagation
equation
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In the previous equations, S is the surface where the
boundary condition of the first kind applies, and So
the surface where the boundary condition of the third

kind applies, and v, = jko1/ "CM—::"”-, as defined in
[1]. The boundary condition of the second kind can
be included within the third kind. In the application
of this theory to transmission line structures and their
discontinuities, the field component in the signal prop-
agation direction is generally nonzero, and the afore-
mentioned boundary conditions are insufficient. On
both the incident and transmitted planes, the longi-
tudinal component needs to be treated carefully [2].
Without losing generality, we will employ a typical

Fig. 1. Viaconfiguration

via structure as an example. On the incident plane
07 and transmitted plane O, the suitable termination
condition is found to be
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Generally, the functional is no longer symmetric be-
cause of (3). Furthermore, to be consistent with the
treatment in the 2%D case, and with the expressions
that we proposed in [1], the adjoint field should be the
field which is incident upon plane O and transmitted
through O;. This adjoint system satisfies
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under the associated boundary conditions
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Suppose that we can find an Fy or Eg which sat-
isfies the aforementioned boundary conditions. If we

define €= E — E'o, then the following functional [3]
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can still apply provxded that the assumed known vec-

tor I is modified to U — 7 x 7 x V:E, and the local
potential method is employed. Following similar pro-
cedures presented in [4], we may further simplify the
functional, yielding
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Eq. (7) can be verified by using Galerkin’s pro-
cedure to transform the vector wave equation into
the weak integral form [1]. For the via struc-
ture, the incident field can be expressed as Ein =
E'(z,y)e~7(*=2) on the plane of incidence O1. Thus

E = E(ey)e ™) 4 TE) (z,y)en )
+ El(w,y)e~ =2 _TEY(z,y)em===)
e Ein+Ere (8)

where I' is the reflection coefficient. Consequently, on
this surface we obtain
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Note that v, in (8) is the complex propagation con-

stant for the 2-§-D uniform line case, which has been

obtained from the precomputation of the 2D% edge
element codes. Comparing ( 9) with (3), we have
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On O, the surface through which the wavefront prop-
agates out of the via structure, we have

E = TEO(m,y)e—72(z_z2)
Etr (11)
where T is the transmission coefficient. On O, we
also have
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Therefore, v, = 72, and U = 0. On other boundary

surfaces, cither the boundary conditions of the first or
third kind apply. The adjoint field, which satisfies (4)

and (5), on O and has the form of E, = Ele7(s==),
At port 2, we have

-
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Similar to (9), we find
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On O3, the adjoint field is governed by
A x V x BN+ mnxax B
= —axnxVE
Ul (15)
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Two issues related to the functional (7) should be

emphasized:

1. The functional (7) will reduce to the form pro-
posed in [1] for uniform 23 D structures.

2. The V.E,, term is assumed to be a known func-
tion. We will maintain this dual characteristic
until the optimization of the functional has been
completed.

EDGE ELEMENT PROCEDURE

For reasons of simplicity, the isotropic case will be
considered first. We shall assume that the same shape
functions employed for the primary fields can also be
used for the adjoint fields. For the edge element with
a basic building block, we may express the electrical
fields in each small cell as [4]

12
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After using the Ritz procedure and grouping together
all of the relationships in the global coordinate system,
we arrive at
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Once (17) has been solved, the distribution of the elec-
trical fields will be obtained. The .S parameters, in-
cluding the reflection and transmission coefficients,
can be found through the definitions extracted in Eqgs.
(8, 11). The desired circuit parameters, C, L, R, G,
can then be found from network theory.

EXCESS CAPACITANCE AND INDUCTANCE

Once the distribution of the three-dimensional elec-
trical field has been determined, the reflection coeffi-
cient can be evaluated from (8). For example, when
the system is excited from port 1, we have

f ds[E . E2D _ F2D . j2D
==l S
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Similarly from Eq. (11), the transmission coefficient
is
T N f52 dSE . E

= T, doBPD EPD

provided the field is properly normalized [5]. The
scattering parameters of a two-port system are

=22 (19)
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The Y-parameters can be found from two-port net-
work theoryr. Then, based on the II type equivalent
circuits, we have the equivalent capacitance and in-
ductance

C =3
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The resistance and the conductance can be found in
the same way. The resistance can be ignored in this
equivalent circuit because, while the vias are of fairly
small cross section, their vertical height between lay-
ers is also quite small (typical via diameters and height
are in the range of 30 — 90m).

The excess capacitance and inductance can be ob-
tained from (21) by subtracting the 2D uniform line
parameters multiplied by the distance inclosed in the
structure box.

NUMERICAL EXAMPLES

The non-symmetric complex sparse system equa-
tion (17) was solved using the Harwell subroutines.
Only a few minutes are required on an IBM 6000 com-
puter for each frequency point, when the total number
of unknowns is approximately 3000.

Example 1: An Air Bridge. Air bridges, as
depicted in Figure 2, are employed in several high
performance integrated circuit technologies to assure
minimum interconnect capacitance and maximum sig-
nal propagation velocity along the interconnect. The
dimension in microns are: o = 212, b = 106, w =
212, h3 = 200, hg = 60, h1 = 635, g = 635, w =
635. The conducting line and the ground plane were
assumed in this example to be copper, although in ac-
tuality aluminum or gold are typically employed. Our
assumption of copper metallurgy in the example al-
lowed us to compare our numerical results with re-
sults already published in the literature, which also
postulated the use of copper. However, the ohmic loss
in this structure was found not to be significant after
analyzing and comparing the real-world interconnect
with an ideal lossless structure of equivalent geom-
etry. Figure 2 also depicts the scattering parameters
evaluated from this method, and from the spectral do-
main analysis (SDA) method [6]. Results from the two
methods show excellent agreement.

Example 2: Via Structure. Through-hole vias are
typically used to connect signal lines residing on dif-
ferent metal layers in most printed circuit board tech-
nologies and in some multichip module (MCM) tech-
nologies. For the circuit design, engineers are con-
cerned about overall signal integrity on interconnects
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Reflection & Transmission Coefficients

GHz | Reflect Trans L (nH) C (pF)

5 2.56E-3 | 0.99998 | 55.767E-3 || 21.274E-3
10 1.29E-2 | 0.99986 | 55.568E-3 j| 24.602E-3
15 2.07E-2 | 0.99968 | 55.406E-3 || 24.965E-3
20 2.77E-2 1 0.99944 | 55.204E-3 || 25.046E-3
25 3.46E-2 | 0.99910 | 54.95E-3 25.122E-3
30 4.19E-2 | 0.99876 | 54.65E-3 25.254E-3

carrying wideband signals, and thus wish to under-
stand the magnitude of the excess inductance and ex-
cess capacitance caused by this via discontinuity. The
method described herein provides the needed para-
metric values. Note in the following table that the
two reference planes incorporated into the via struc-
ture, shown in Fig. 1, are placed at locations z; = 0
and zo = 0.14 mm respectively. Fig. 3 depicts the
side and top view of the structure, with all dimensions
(in microns) included. The resulting frequency depen-
dent S-parameters are listed in Table 1. It can be seen
from the table that the effect of the via of Fig. 1 to the
signal integrity is very minor. Laboratory measure-
ments support this conclusion. The capacitance values
are compared with the FDTD results with discrepancy
< 7%. It appears from this set of data that the new
method allows the use of a minimum number of brick
edge elements (2000), while nonetheless obtaining a
numerically acceptable result.

CONCLUSIONS

In this paper, we have identified an additional term
in the boundary condition of the third kind for three
dimensional structures. In conjunction with the two
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Fig. 2. Scattering parameters for an air bridge

dimensional uniform transmission line results, the
newly developed three dimensional formulation can
extract from impedance discontinuities the reflected
and transmitted waves, and convert them into fre-
quency dependent lumped circuit parameters. A nu-
merical example of a through-hole via, typically found
in printed circuit boards and multichip modules, was
analyzed. As another example, a three dimensional air
bridge, a structure employed in some integrated circuit
fabrication technologies, was also analyzed. Compar-
isons with available published results indicate excel-
lent agreement with this new method.
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Fig. 3. Side and Top Views of the Through-Hole Via
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